Response of the Ubiquitous Pelagic Diatom Thalassiosira weissflogii to Darkness and Anoxia
نویسندگان
چکیده
Thalassiosira weissflogii, an abundant, nitrate-storing, bloom-forming diatom in the world's oceans, can use its intracellular nitrate pool for dissimilatory nitrate reduction to ammonium (DNRA) after sudden shifts to darkness and anoxia, most likely as a survival mechanism. T. weissflogii cells that stored 4 mM (15)N-nitrate consumed 1.15 (±0.25) fmol NO3 (-) cell(-1) h(-1) and simultaneously produced 1.57 (±0.21) fmol (15)NH4 (+) cell(-1) h(-1) during the first 2 hours of dark/anoxic conditions. Ammonium produced from intracellular nitrate was excreted by the cells, indicating a dissimilatory rather than assimilatory pathway. Nitrite and the greenhouse gas nitrous oxide were produced at rates 2-3 orders of magnitude lower than the ammonium production rate. While DNRA activity was restricted to the first few hours of darkness and anoxia, the subsequent degradation of photopigments took weeks to months, supporting the earlier finding that diatoms resume photosynthesis even after extended exposure to darkness and anoxia. Considering the high global abundance of T. weissflogii, its production of ammonium and nitrous oxide might be of ecological importance for oceanic oxygen minimum zones and the atmosphere, respectively.
منابع مشابه
Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a Warmer and More Acidified Future Ocean
Increasing Transparent Exopolymer Particle (TEP) formation during diatom blooms as a result of elevated temperature and pCO2 have been suggested to result in enhanced aggregation and carbon flux, therewith potentially increasing the sequestration of carbon by the ocean. We present experimental results on TEP and aggregate formation by Thalassiosira weissflogii (diatom) in the presence or absenc...
متن کاملCadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii
The Carbon Concentration Mechanism (CCM) allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC) necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA) enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of i...
متن کاملCoupling Effects of Silicate, Iron and Other Various Abiotic Variables on Growth of Two Diatoms, Phaeodactylum Tricornutum and Thalassiosira Weissflogii and Their Silicon Utilization
The effects of various Abiotic factors, including concentrations of silicate and iron, temperature, light intensity and salinity of media on two purebred red tide diatoms, Phaeodactylum tricornutum and Thalassiosira weissflogii were investigated through single and full factorial experiments. The single-factor experiments showed diatom Phaeodactylum tricornutum had the fastest growth rate with i...
متن کاملChanges in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure.
Two detoxification mechanisms working in the marine diatom Thalassiosira weissflogii to cope with mercury toxicity were investigated. Initially, the effect of mercury on the intracellular pool of non-protein thiols was studied in exponentially growing cultures exposed to sub-toxic HgCl(2) concentrations. T. weissflogii cells responded by synthesizing metal-binding peptides, named phytochelatins...
متن کاملTranscriptomics Responses in Marine Diatom Thalassiosira pseudonana Exposed to the Polycyclic Aromatic Hydrocarbon Benzo[a]pyrene
Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine...
متن کامل